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Noise-induced transport of two coupled particles
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We study the motion of two harmonically coupled particles in a sawtooth potential. The particles are subject
to temporally correlated multiplicative noise. The stationary current is calculated in an expansion about the
limit of rigid coupling. For two coupled particles a driving mechanism occurs which is different from the one
occurring in the case of a single particle. In particular this mechanism does not need diffusion. Depending on
the equilibrium distance of the particles and the coupling constant, a current reversal occurs. Possible relevance
as a model for motor proteins is discussed.
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I. INTRODUCTION AND MAIN RESULTS

For some years the problem of noise-induced trans
has attracted much interest in theoretical~for a review, see
Refs. @1,2# and references therein! as well as experimenta
physics@3,4#. From a physical point of view the motivatio
to study models for noise-induced transport is to study
conditions under which noise out of equilibrium can indu
directed motion, even if the average force is zero. In gene
to obtain directed motion two conditions must be fulfille
~1! The periodic potential must have no inversion symme
~2! Detailed balance has to be broken. In the Brownian
gime, the second condition can be satisfied by the use
colored noise, i.e., noise correlated in time@5#. Mainly two
types of models are studied: A particle in a periodic poten
subject to a stochastic force~additive colored noise, rocking
ratchet@5#! and a particle in a fluctuating periodic potenti
~multiplicative colored noise, flashing ratchet@6,7#!.

Besides this purely physical motivation, the theoreti
study of noise-induced transport has been stimulated by
periments on motor proteins such as kinesin or dynein. M
tor proteins move cell organelles along the cytoscelet
Their motion is random, but directed on average@8,9#. En-
ergy is provided by adenosine triphosphate~ATP! hydroly-
sis. ATP coupling to a motor protein induces a series
conformational changes. These are modeled by transit
between different states, in which the protein is subjec
different potentials. Alternatively one can consider a prot
moving in a fluctuating potential. The potential models t
interaction of the motor protein with the filaments of th
cytosceleton. It is periodic and has no inversion symme
because of the polar structure of the filament. As ATP
drolysis drives the motor system out of detailed balan
conditions for transport are satisfied. Models for nois
induced transport can qualitatively explain some proper
of motor proteins.

In this paper we discuss a model that is inspired by
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structural properties of motor proteins. Processive motor p
teins usually consist of two spherical heads, joined by a n
region, and a tail, at which the cargo is attached. Each h
can couple to the filaments of the cytosceleton and hydrol
ATP.

Several authors studied the motion of two coupled p
ticles modeling the two heads of a motor protein@10–13#.
Both types of ratchet models have been studied: Ajdari c
sidered the case of multiplicative potential fluctuations in
case of weak coupling@10#, whereas Dere´nyi and Vicsek
discussed the case of stochastic forces@11#. The models of
Peskin and Oster@12# and Duke and Leibler@13# rely on a
different mechanism based on transition times depending
strain of the heads.

In this paper we present results for a model with tw
particles moving in a fluctuating periodic potential and co
pling independently to thermal and colored noise~Fig. 1!.
The two particles are harmonically coupled. In contrast
Ref. @10# we consider the case of strong coupling.

The paper is organized as follows: In Sec. II we pres
the model, and introduce the Fokker-Planck equation. In S
III the general method of solution is explained: We solve t
stationary Fokker-Planck equation in an expansion about
case of rigid coupling, and derive a set of equations of
type of a Fokker-Planck equation for a single particle. The
are solved using methods described in Ref.@14# for the case
of a piecewise linear potential~Sec. IV!. Some mathematica
details are presented in the Appendixes. In Sec. V we pre
numerical results for special stochastic processes, and
cuss the current as a function of the correlation time of
noise and the equilibrium distance of the two particles. Th
are current reversals not only of the current as a function
the correlation time, but also as a function of the equilibriu
distance. In addition, for two coupled particles there is
driving mechanism that does not need diffusion: If the eq
librium distance of the particles is larger than the short s
tion of the sawtooth potential, one particle can be pushed

FIG. 1. The model: Two coupled particles in a sawtooth pot
tial, which fluctuates independently for each particle
©2001 The American Physical Society14-1



he
e
e
e
lt
r

th
s

t
m
a
ng
e
er

t
d

ng
al
-

tio

on

s
le

s
s
ob

ry

f

ex-
a
.

c-

tion
th-
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pulled forward by the other. In Appendix B we compare t
results with those for a model with additive stochastic forc
instead of multiplicative potential fluctuations. In this cas
the model with two rigidly coupled particles can be reduc
to a one-particle model. Finally we summarize the resu
and discuss possible relevance of the model for motor p
teins ~Sec. VI!.

Open questions concern the current as a function of
coupling constant. In the case of weak coupling there i
slightly different driving mechanism@10#. To study the tran-
sition from strong to weak coupling, other methods have
be used, especially computer simulations. We show so
results of the simulations in Sec. V. These results indic
that the order of magnitude of the current does not cha
when the coupling constant is varied. But in some cas
depending on the other parameters of the model, we obs
a current reversal. On the other hand, simulations allow
study refined models for motor proteins. The present mo
imitates only some~but perhaps important! aspects of motor
proteins.

II. MODEL WITH TWO COUPLED PARTICLES

We consider two harmonically coupled particles movi
in a periodic potentialV. The particles are subject to therm
noisej i at temperatureT, and multiplicative nonwhite poten
tial fluctuationszi ( i 51 and 2!. z1 and z2 are stochastic
processes of the same type correlated in time with correla
time t, but independent of each other:

^j i~ t !&50, ^j i~ t !j j~ t8!&5d i , jd~ t2t8!, ~1!

^zi~ t !zj~ t8!&2^zi~ t !&^zj~ t8!&5g0,1
2 d i , je

2ut2t8u/t. ~2!

In the overdamped regime we have the Langevin equati

ẋ15 f ~x1!z1~ t !2 1
2 k~x12x22 l !1A2Tj1 , ~3!

ẋ25 f ~x2!z2~ t !1 1
2 k~x12x22 l !1A2Tj2 , ~4!

where f (xi)52 ]V/]xi . k is the coupling constant, andl is
the equilibrium distance of the particles. Here we have
the friction constant to one by rescaling the time variab
We introduce center of mass and relative coordinatex
5(x11x2)/2 andy5(x12x22 l )/2. The Langevin equation
are equivalent to a Fokker-Planck equation for the joint pr
ability densityr(x,y,z1 ,z2 ,t),

2
]

]x Fz1

2
f S x1

l

2
1yD1

z2

2
f S x2

l

2
2yD2

T

2

]

]xGr
2

]

]y Fz1

2
f S x1

l

2
1yD2

z2

2
f S x2

l

2
2yD

2ky2
T

2

]

]yGr1Mz1
r1Mz2

r5
]r

]t
, ~5!
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where we have assumed thatzi are Markov processes with
generatorsMzi

. As we are only interested in the stationa

solution, we let
]r

]t
50. By averaging the left hand side o

the Fokker-Planck equation overz1 , z2, and y, we obtain
the stationary current

J5E
2`

`

dyE dz1E dz2Fz1

2
f S x1

l

2
1yD

1
z2

2
f S x2

l

2
2yD2

T

2

]

]xGr. ~6!

III. EXPANSION ABOUT RIGID COUPLING

We solve the stationary Fokker-Planck equation in an
pansion about the limit of rigid coupling. We introduce
new coordinateỹ5Aky and expand the force terms in Eq
~5! in powers of 1Ak. With the ansatz

r5r01
1

Ak
r1/21

1

k
r11

1

k3/2
r3/21•••, ~7!

we obtain a set of equations for the powers ofAk. From
these equations we can calculate theỹ dependence of

rs (s50,1
2 ,1), which is given in Appendix A1, and by

averaging overỹ we obtain equations for the averaged fun
tions

r̄s~x,z1 ,z2!5E
2`

`

dỹ rs~x,ỹ,z1 ,z2!, ~8!

that have a structure similar to the Fokker-Planck equa
for one particle and thus can be solved using similar me
ods:

]

]x Fz1

2
f S x1

l

2D1
z2

2
f S x2

l

2D2
T

2

]

]xG r̄0

5Mz1
r̄01Mz2

r̄0 , ~9!

]

]x Fz1

2
f S x1

l

2D1
z2

2
f S x2

l

2D2
T

2

]

]xG r̄1/2

5Mz1
r̄1/21Mz2

r̄1/2, ~10!

05
]

]x Fz1

2
f S x1

l

2D1
z2

2
f S x2

l

2D2
T

2

]

]xG r̄1

12T
]

]x Fz1

4
f 9S x1

l

2D1
z2

4
f S x2

l

2D G r̄0

1
]

]x H z1
2

4
f S x1

l

2D f 8S x1
l

2D1
z2

2

4
f S x2

l

2D f 8S x2
l

2D
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2
z1z2

4 F f S x1
l

2D f 8S x2
l

2D1 f S x2
l

2D f 8S x1
l

2D G J r̄0

2~Mz1
1Mz2

!r̄1 . ~11!

The contributions to the current, in the corresponding or

Js (s50,1
2 ,1), are obtained analogously to Eq.~6!. In addi-

tion to these equations we have periodic boundary condit

@ r̄s(x1L)5 r̄s(x)# and conditions for the normalization o
the probability density:

E
0

L

dxE dz1E dz2 r̄0~x1L !51, ~12!

E
0

L

dxE dz1E dz2 r̄s~x1L !50, s5
1

2
and 1. ~13!

For Mz1
and Mz2

we take a class of processes with t
properties:

Mzi
fn~zi !52lnfn~zi !, ~14!

f05q~zi !, l050, ln.0~n.0!, ~15!

zifn~zi !5gn21,nfn211gn,n11fn111gn,nfn , ~16!

where q(zi) is the stationary distribution ofzi @Mzi
q(zi)

50# andgn21,n5gn,n21. The parametersgn21,n are related
to the moments of the stationary distribution@14#. We ex-

pandrs (s50,1
2 ,1) in the eigenfunctions of the generato

Mz1
andMz2

. Using Eq.~16!, we obtain recursion relations
that we solve for the case of a sawtooth potential.

IV. SOLUTION FOR A PIECEWISE LINEAR POTENTIAL

In this section we solve Eqs.~9!–~11! for the case of a
sawtooth potential. The method of solution is similar to t
one used in Ref.@14#. We consider the case of a sawtoo
potential with the following properties of the forcef (x):

f ~x!5H f 1 : 0,x<L1

f 2 : L1,x<L,
~17!

with f 1L11 f 2L250 andL25(L2L1). We assume thatf 1
,0 and f 2.0. We define length and energy units byL51
and DV5L1u f 1u51. The only remaining parameter for th
potential is the asymmetrya5L1 /L2, which we assume to
be .1. For the results presented in Sec. V, we have cho
a54, corresponding toL150.8, f 1521.25, andf 255. In
these units a current of21 corresponds to the velocity of
particle subject to the forcef 1 in the case of maximal asym
metry.

We define effective forcesf (1) and f (2) by
03191
r

s

en

f (1)5 f S x1
l

2D , f (2)5 f S x2
l

2D ~18!

and consider the intervalsI k5(xk21 ,xk), k51, . . .K, where
both f (1) and f (2) are constant.K can be 2, 3, or 4, depend
ing on the equilibrium distancel of the particles.

A. Order k0

Expandingr0 in the eigenfunctions of the generatorsMz1

andMz2
,

r0~x,z1 ,z2!5p0,0~x!q~z1!q~z2!,

1(
i , j

~21! i 1 j pi , j8 ~x!f i~z1!f j~z2!,

~19!

and using relation~16!, from Eq. ~9!, we obtain a recursion
relation for the coefficientspi , j (x). As it is somewhat
lengthy, it is given in the Appendix. It is solved analogous
to the case of a single particle. The method is describe
detail in Ref. @14#. As for a piecewise linear potential th
recursion relation is a set of linear differential equations w
constant coefficients for each intervalI k , solutions can be
found for xPI k . Then a linear combination of these sol
tions is determined by the periodic boundary conditions, n
malization, and continuity ofr0.

For the sawtooth potential the solution is forxPI k ,

p0,0~x!5 (
r 51

2(N11)221

cr ,ka0,0,k
(r ) ak

(r ) exp~ak
(r )x!1b0,0,k ,

~20!

pi , j~x!5 (
r 51

2(N11)221

cr ,kai , j ,k
(r ) exp~ak

(r )x!1bi , j ,k , ~21!

where the second equation holds fori 1 j >1. ak and ai , j ,k
are the solutions of a generalized eigenvalue problem of
following type:

Aak5akBkak1
T

2
ak

2ak . ~22!

In contrast to Ref.@14# the matricesA and B here are not
tridiagonal. The constantsbi , j ,k are zero except

b0,0,k5
J0

g0,0

2
~ f k

(1)!1~ f k
(2)!

~23!

b1,0,k5
g0,1

2l1
f k

(1)b0,0,k , b0,1,k5
g0,1

2l1
f k

(2)b0,0,k . ~24!
4-3
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The coefficientscr ,k and the currentJ0 are calculated using
conditions for the continuity ofpi , j ( i , j >0) and pi , j8 ( i
1 j .0), and the normalization ofp0,0.

B. Order kÀ1

In the orderk21/2 we have the same recursion relatio
but the normalization condition@Eq. ~12!# is replaced by Eq.
~13!. This leads to the result that bothr1/2 andJ1/2 vanish.

For the orderk21 the method has to be extended beca
of the terms wherer0 andr1/2 occur in Eq.~11!. This some-
what technical procedure is explained in the Appendixes.
in the orderk0 this leads to a generalized eigenvalue pro
lem for each intervalI k , and a set of conditions of how t
combine the solutions in these intervals.

V. RESULTS

The results presented in this section have been obta
by numerically solving the eigenvalue problems@Eq. ~22!#
and the system of linear equations obtained from conditi
combining these solutions. The advantage of this metho
solution is that numerical calculations can be perform
quickly, and curves like the ones shown here are obtai
within a few seconds. The results have been checked
computer simulations of the dynamics given by the Lange
equations~3! and ~4!. These simulations are also used
estimate the range of validity of the expansion about ri
coupling.

A. Results for the case of rigid coupling„order k0
…

1. Dichotomous processes

We first consider the case of symmetric dichotomous p
cesses:z1 and z2 vary only between two valuesza and zb ,
g1,15g0,05(za1zb)/2 and g0,15(za2zb)/2. In the casel
50 the effective potential is@(z11z2)/2#V(x); thus the re-
sults are the same as in the case of one particle in a flu
ating potential, where the stochastic process is a sum of
dichotomous processes. In particular we obtain a curren
versal for large correlation timet, if za,0 andza1zb.0
~the solid line in Fig. 2!. For small positivel the current
reversal vanishes. This is shown in Fig. 3. Thus there
reversal of the direction of motion as a function of the eq
librium distancel.

In the caseza50 andzb.0, there is no current reversa
but Fig. 2 shows that the maximal current is very sensit
on l. For l 50.5 the current is about four times larger than f
l 50. If we plot the current as a function ofl, we can see tha
the current is nearly constant, as long asl is smaller than the
short sectionL2 of the sawtooth potential. Ifl .L2, the cur-
rent grows rapidly.

The reason for this behavior is that forl .L2 there is
another driving mechanism, which is fundamentally differe
from the one occurring in the case of a single particle. T
driving mechanism is shown in Fig. 4 for the casel 50.5.
When z15z25zb.0 there are two equilibrium positions
One particle~A! is bound in a potential minimum, and be
cause of the rigid coupling the other@B in Fig. 4~a! andB8 in
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Fig. 4~b!, respectively# is not able to move to a minimum. I
the potential changes to zero for the particle in the minimu
the other particle can move to the next minimum and push
pull the first particle to the left. If the potential changes
zero for particleB or B8, respectively, nothing happens,
the other particle is bound in the potential minimum. If th
potential is zero for both particles, this driving mechanis
stops working, but there is the possibility of diffusion as
the case of a single particle. This driving mechanism is si
lar to the one discussed in Ref.@10#, which occurs in the case
of weak coupling of two particles. In this case, when t
potential changes to zero for one particle, it is pushed f
ward by the relaxation of the spring between the particles
the case of a single particle similar driving occurs if there
also fluctuations of the position of the potential minimu
@17#. In all these cases diffusion is not necessary for moti

FIG. 2. CurrentJ0 as a function oft for dichotomous processes
za520.8,zb51.2,l 50 ~solid line! and za50,zb52 for l 50 ,0.3,
and 0.5~dashed lines!. The other parameters areT50.2 anda54.
Here and in the following figures the symbols are results fr
simulations of the Langevin equation.

FIG. 3. CurrentJ0 as a function ofl for dichotomous processes
The parameters are the same as in Fig. 2;t51.
4-4
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FIG. 4. Driving mechanism for
rigidly coupled particles withl
5L/2.
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This driving mechanism can only work if the particle, fo
which the potential has switched off, can escape from
initial minimum, when it is pushed to the left. This is th
case ifl .L2.

This driving mechanism also works ifz1 andz2 fluctuate
between two positive valuesza andzb (za,zb), as long as

zau f 2u,zbu f 1u. ~25!

Indeed this effect can be seen for very small temperat
Fig. 5 shows the current as a function ofza , when zb is
constant. For the chosen parameters condition~25! holds for
za,0.5. For small temperature the current vanishes, ifza
.0.5. For higher temperature there is also a current forza
.0.5, because there is still driving by diffusion.

2. Other stochastic processes

We have done the same calculations for some other
chastic processes of the class defined by Eqs.~14!–~16!,
namely, for sums of dichotomous processes and discrete
garoo processes. In all these cases the results are qu

FIG. 5. Driving against a potential well: The current as a fun
tion of za for constantzb . For small temperature the current va
ishes forza.zbu f 1u/u f 2u. (zb52, l 50.5, a54, and t50.1).
03191
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tively similar. Slightly different results are obtained fo
asymmetric dichotomous processes.

Sums ofN dichotomous processes are interesting beca
in the case of one particle a current reversal for larget
occurs only if N is an even number. For two particles th
effective stochastic process in the casel 50 is always an
even sum of dichotomous processes. Thus there is a cu
reversal for allN, providedza,0 andza1zb.0. As in the
case of a single particle the maximal positive current
smaller for largeN. Here the current reversal remains for
larger interval ofl. This seems to be due to the current r
versal occurring in the one-particle case forN.1. Conver-
gence against the Ornstein-Uhlenbeck process can be
for N.3. Similar results can be obtained for kangaroo p
cesses with the same stationary probability densities.

We have also studied the case of asymmetric dichotom
processes as an example for a process with different tra
tion times for the transitionsza→zb andzb→za . In this case
g0,0Þg1,1. In contrast to the symmetric dichotomous pr
cess, for asymmetric dichotomous processes there is a
rent reversal in the one-particle case@14#. For the case of two
particles Fig. 6 shows the current as a function of the co
lation time for different values ofl. Here a current reversa
occurs for all values ofl. ~For l 50 the negative curren
which occurs for larget is very small, and cannot be seen
Fig. 6.! Only the length of the interval of positive current a
well as the maximal positive current decrease with increas
l.

B. Order kÀ1

1. Dichotomous processes

For dichotomous processes varying between two posi
values the correctionJ1 to the current is always positive
Thus the current decreases with small oscillations of the p
ticles. If one of the values of the dichotomous process
negative, there is also a change of the sign ofJ1 ~Fig. 7!.
This change of sign does not occur at the same value oft as
the current reversal in the case of rigid coupling. Thus in
small region oft ~between the changes of sign ofJ0 andJ1)

-

4-5
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the current increases with small oscillations. The behavio
the current as a function of the equilibrium distance is qu
complicated. It is shown in Fig. 8.

2. Other stochastic processes

As in the orderk0, we obtain qualitatively similar result
for other stochastic processes. An interesting observation
be made in the case of asymmetric dichotomous proces
In contrast to the orderk0, where we have found a curren
reversal for all values ofl, the sign ofJ1 changes only for
small l. Thus we can distinguish two different regimes: If th
sign ofJ1 changes~the case of smalll ), there is only a small
interval of correlation times in which the current increas
with small oscillations of the particles. For largerl instead,
the current increases with small oscillations for all corre
tion times which are smaller than some critical value~Fig.
9!.

FIG. 6. J0 for asymmetric dichotomous processes withza5
20.5, zb51.5, and a probabilityPa50.9 forza for different values
of l (a54 andT50.2).

FIG. 7. J1 for dichotomous processes withza520.8 andzb

51.2 as a function oft (T50.2 anda54).
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C. Results for finite values ofk

From the results presented so far it is difficult to det
mine the range of validity of the expansion about the case
rigid coupling. The absolute value ofJ1 is in most cases
larger by one order of magnitude than that ofJ0. This is an
indication that the expansion may be valid only for ve
large k. However, using the expansion, we can obtain
relative sign ofJ0 andJ1. This leads to the interesting qual
tative result that small oscillations can increase or decre
the current, depending on the parameters. It may even
possible to reverse the current by changingk.

Since the absolute value ofJ1 is large compared toJ0,
one may expect that the series forJ in powers of 1/k is an
asymptotic series. To obtain results for finitek we performed
simulations of the Langevin equations~3! and~4!. The simu-
lations yield the stationary current as a function ofk. Results
for two different values ofl are shown in Figs. 10 and 11.

The figures show that, depending on the other parame
of the system, the current may change the sign as a func
of k. The linear dependence on 1/k expected from the ex-
pansion can be seen for values of 1/k,1023 in our units. For
smaller values ofk, the expansion is certainly not valid. O

FIG. 8. J1 for dichotomous processes as a function ofl. The
parameters are the same as in Fig. 7.

FIG. 9. J1 for asymmetric dichotomous processes. The para
eters are the same as in Fig. 6.
4-6
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NOISE-INDUCED TRANSPORT OF TWO COUPLED PARTICLES PHYSICAL REVIEW E63 031914
the other hand, the order of magnitude of the current rem
the same for all values ofk. The results of the expansion an
the simulations agree very well for not too small correlati
times. Minor agreement for small correlation times is su
posed to be due to minor numeric precision in this case.

The current reversal in Fig. 10 can be understood by c
sidering the cases of rigidly coupled particles (k5`) and
uncoupled particles (k50). For small l the case of rigid
coupling is essentially equivalent to the one-particle c
with a sum of two dichotomous processes. In this case
current is positive for larget, but negative for smallt. On
the other hand if the particles are not coupled at all,
model reduces to two independent simple dichotomous
cesses and the current remains negative for all values o
correlation time. As the reduction to the single-particle ca
with a sum of two dichotomous processes is not possible
largerl because of mutual driving, the situation is different
Fig. 11, where no positive current occurs.

VI. SUMMARY AND DISCUSSION

In Sec. V we have presented results for different stoch
tic processes, and discussed how the current depends o
correlation timet of the noise, the equilibrium distancel of
the particles, and the coupling constantk. Although the de-
tails of the results are rather complex, there are some gen
features that are common to all the cases studied here.

~1! There is a current reversal if the stochastic parame
fluctuate between positive and negative values, and the
of the current depends not only ont but also onl andk.

~2! There is mutual driving of the particles. This drivin
mechanism does not need diffusion.

~3! Small oscillations of the particles can increase or
crease the current, depending on the parameters.

As already mentioned in Sec. I, models for noise-induc
transport can qualitatively explain some properties of mo
proteins: Motion in these models is stochastic, but direc

FIG. 10. Simulations for the current as a function ofk for l
50.01,a54, andT50.2. z(t) is a symmetric dichotomous proces
with za520.8 andzb51.2. Here and in Fig. 11, the results for rig
coupling are inserted atk5105 ~filled symbols!; the solid lines
indicate the results of the expansion.
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on average, and one obtains a velocity which has the s
order of magnitude as the experimentally observed one@6#.
As in some cases there is a current reversal in these mo
different directions of motion of motor proteins, which hav
similar structures, can be explained by small differences
the parameters, especially of the friction constant.

It should be emphasized that such a model cannot
scribe the motion of a motor protein accurately. But it pr
vides a phenomenological description of general asp
based on a rather simple mechanism. The mechanisms
curing in real motor proteins are more complex, and ther
a wide diversity of mechanisms adapted to different fun
tions of different motor proteins@15#.

In most ratchet models the structure of the motor prot
is completely neglected; the protein is treated as a point
ticle without internal degrees of freedom. Directed motion
due to broken symmetry and broken detailed balance,
structural properties of the motor protein are not essen
Interestingly the driving mechanism changes if two heads
coupled: motion of a single head, modeled by a single p
ticle in a fluctuating potential, is driven by rectified diffusio
In contrast, the results presented in the previous section
well as those of Ref.@10#, show that coupling two head
leads to a nondiffusive driving mechanism, which provid
more efficient driving, as backward steps are less proba
Indeed, similar behavior is found in experiments with on
and two-headed kinesins: the velocity of a single-headed
nesin is smaller by a factor 5, and diffusion stronger by
factor 20, compared to a two-headed kinesin@16#. But
though our model has transport properties similar to th
observed in kinesin motion, the driving mechanism of a tw
headed kinesin is certainly more complex. For example
contrast to our simple model the kinesin heads are suppo
to work in a ‘‘hand-over-hand’’ fashion@15#.

In this paper we have studied a class of models in wh
only the amplitude of the potential fluctuates. If the tran
tions also shift the minimum of the potential, there is a dr
ing mechanism that is similar to the one described here,
does not need diffusion even in the case of one particle@17#.

Further refinement of the model would be necessary

FIG. 11. Simulations for the current as a function ofk for l
50.3. The other parameters are the same as in Fig. 10.
4-7
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describe motor proteins more realistically. For example
transitions have to occur only at discrete points, the ac
sites, to obtain qualitatively correct results for the velocity
a function of ATP concentration@7#. If we introduce local-
ized transitions in the present model, the stochastic par
etersz1 andz2 will no longer be uncorrelated. Though co
relations between the two heads of a real motor protein m
depend on particular structural properties of the protein
should be interesting to study how these correlations dep
on the parameters in this simple model.

At the end let us mention that the model discussed h
may also be realized in an artificial ratchet: The proble
that the potential has to fluctuate independently for each
ticle, can be solved if the particles move on different trac
that are fluctuating independently.
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APPENDIX A: SOME TECHNICAL ASPECTS
OF THE METHOD OF SOLUTION

1. Dependence onỹ

The dependence onỹ of the functionsrs(x,ỹ,z1 ,z2), s

50, 1
2, and 1, required to average Eq.~8!, is given by the

expressions,

r0~x,ỹ,z1 ,z2!5
1

ApT
expS 2 ỹ2

T
D r̄0~x,z1 ,z2!, ~A1!

r1/25
1

ApT
expS 2 ỹ2

T
D H r̄1/2~x,z1 ,z2!

1
1

T Fz1f S x1
l

2D2z2f S x2
l

2D G ỹr̄0J , ~A2!

r15
1

ApT
expS 2 ỹ2

T
D H r̄1~x,z1 ,z2!

1
2ApT

T F E
0

ỹ
dỹ8F expS ỹ82

T
D

2E
0

`

dỹE
0

ỹ
dỹ8F expS ỹ82

T
D G J , ~A3!

with

F5Fz1

2
f S x1

l

2D2
z2

2
f S x2

l

2D Gr1/2

1 ỹFz1

2
f 8S x1

l

2D1
z2

2
f 8S x2

l

2D Gr0 . ~A4!
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2. Recursion relation for the order k0

With ansatz~19!, the following recursion relation for the
coefficientspi , j (x) is obtained:

J05
g0,0

2
f k

(1)p0,01
g0,0

2
f k

(2)p0,02
T

2
p0,08

2
g0,1

2
f k

(1)p1,08 2
g0,1

2
f k

(2)p0,18 , ~A5!

g0,1

2
f k

(1)p0,05l1p1,01
g1,1

2
f k

(1)p1,08 1
g0,0

2
f k

(2)p1,08

2
T

2
p1,09 2

g1,2

2
f k

(1)p2,08 2
g0,1

2
f k

(2)p1,18 ,

~A6!

g0,1

2
f k

(2)p0,05l1p0,11
g0,0

2
f k

(1)p0,18 1
g1,1

2
f k

(2)p0,18

2
T

2
p0,19 2

g0,1

2
f k

(1)p1,18 2
g1,2

2
f k

(2)p0,28 ,

~A7!

g i 21,i

2
f k

(1)pi 21,j8 1
g j 21,j

2
f k

(2)pi , j 218 5~l i1l j !pi , j

1
g i ,i

2
f k

(1)pi , j8 1
g j , j

2
f k

(2)pi , j8 2
T

2
pi , j9

2
g i ,i 11

2
f k

(1)pi 11,j8 2
g j , j 11

2
f k

(2)pi , j 118 . ~A8!

This recursion relation is not tridiagonal as in the case o
single particle@14#, but the same methods of solution can
applied.

3. Method for the order kÀ1

In this section and in Appendix A 4, we explain th
method of solution for the orderk21, which involves some
more technical considerations. Using the same ansatz a
the orderk0,

r1~x,z1 ,z2!5h0,0~x!q~z1!q~z2!

1(
i , j

~21! i 1 jhi , j8 ~x!f i~z1!f j~z2!,

~A9!

we obtain a recursion relation of the following type:
4-8
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~l i1l j !hi , j1
g i ,i

2
f (1)~x!hi , j8 1

g j , j

2
f (2)~x!hi , j8 2

T

2
hi , j9 2

g i 21,i

2
f (1)~x!hi 21,j8 2

g j 21,j

2
f (2)~x!hi , j 218 2

g i ,i 11

2
f (1)~x!hi 11,j8

2
g j , j 11

2
f (2)~x!hi , j 118 52

T f (1)9~x!

8
~g i ,i pi , j8 1g i 21,i pi 21,j8 1g i 11,i pi 11,j8 !2

T f (2)9~x!

8
~g j , j pi , j8 1g j 1 , j pi , j 218

1g j 11,j pi , j 118 !2
f (1)~x! f (1)8~x!

4
@~g i ,i

2 1g i 21,i
2 1g i ,i 11

2 !pi , j8 1g i 21,ig i 22,i 21pi 22,j8 2g i 21,i~g i ,i1g i 21,i 21!pi 21,j8

2g i ,i 11~g i ,i1g i 11,i 11!pi 11,j8 1g i ,i 11g i 11,i 12pi 12,j8 #2
f (2)~x! f (2)8~x!

4
@~g j , j

2 1g j 21,j
2 1g j , j 11

2 !pi , j8

1g j 21,jg j 22,j 21pi 22,j8 2g j 21,j~g j , j1g j 21,j 21!pi 21,j8 2g j , j 11~g j , j1g j 11,j 11!pi 11,j8 1g j , j 11g j 11,j 12pi 12,j8 #

1
1

4
@ f (1)~x! f (2)8~x!1 f (2)~x! f (1)8~x!#~g i ,ig j , j pi , j8 2g i 21,ig j , j pi 21,j8 2g i ,i 11g j , j pi 11,j8 2g i ,ig j 21,j pi , j 218

1g i 21,ig j 21,j pi 21,j 218 1g i ,i 11g j 21,j pi 11,j 218 2g i ,ig j , j 11pi , j 118 1g i 21,ig j , j 11pi 21,j 118 1g i ,i 11g j , j 11pi 11,j 118 !.

~A10!
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The difference to the orderk0 is that here we have additiona
inhomogeneities. But in the case of a piecewise linear po
tial the derivatives of the forces ared andd8 functions; thus
the inhomogeneities are zero in the intervalsI k , so that in
these intervals we have a recursion relation of the same
as in the orderk0. The solution forh0,0(x) andhi , j8 (x) thus
consists of a piecewise continuous part and a sum ofd func-
tions:

h0,0~x!5h0,0
(s)~x!1 (

k51

K

U0,0,kd~x2xk! ~A11!

h0,08 ~x!5h0,08 (s)~x!1 (
k51

K

V0,0,kd~x2xk!

1 (
k51

K

U0,0,kd8~x2xk! ~A12!

hi , j~x!5hi , j
(s)~x!, i 1 j .0 ~A13!

hi , j8 ~x!5hi , j8~s!~x!1 (
k51

K

Ui , j ,kd~x2xk! ~A14!

hi , j9 ~x!5hi , j9(s)~x!1 (
k51

K

Vi , j ,kd~x2xk!

1 (
k51

K

Ui , j ,kd8~x2xk!. ~A15!

The piecewise continuous parts are calculated the same
as in the orderk0. The only difference is that here we hav
constantsb̃i , j ,k containingJ1 instead ofbi , j ,k :
03191
n-
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h0,0
(s)~x!5 (

r 51

2(N11)221

c̃r ,ka0,0,k
(r ) ak

(r ) exp~ak
(r )x!1b̃0,0,k ,

~A16!

hi , j
(s)~x!5 (

r 51

2(N11)221

c̃r ,kai , j ,k
(r ) exp~ak

(r )x!1b̃i , j ,k ~ i 1 j .0!.

~A17!

We obtain the coefficientsVi ,k , i>0 andUi ,k , i .0 by dif-
ferentiating the incontinuities of the piecewise continuo
functionsh0

(s)(x), hi8
(s)(x) andhi

(s)(x). Thus we have

V0,0,k5h0,0
(s)~xk10!2h0,0

(s)~xk20!, ~A18!

Vi , j ,k5hi , j8(s)~xk10!2hi , j8(s)~xk20!, ~A19!

Ui , j ,k5hi , j
(s)~xk10!2hi , j

(s)~xk20!, i 1 j .0. ~A20!

The coefficientsc̃r ,k and the currentJ1 are calculated by
solving a system of conditions for thed and d8 functions,
and the normalization condition forh0,0(x).

4. Conditions for d and d8 functions

To calculate the coefficientsc̃r ,k and the currentJ1 we use
a system of conditions for thed and d8 functions. In this
section we show how to derive these conditions from
recursion relation~A10!.

We introduce the variablee5x2xk , wherexk is the bor-
der of a potential section, and multiply a continuous t
function t(e) to equation~A10!. The width oft(e) aboutxk
is small, so we consider only one pointxk . Then we inte-
grate the equation over an interval aboutxk . Terms of the
order of the width of the test function are neglected. Afte
partial integration of the terms in whichd8 occurs, we have
to consider two cases. If the test function is odd,t(0)50 and
4-9
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thus only terms witht8(0) remain. We obtain the following
condition:

Ui , j ,k5 1
4 ~ f k11

(1) 2 f k
(1)!@g i ,i pi , j8 ~xk!1g i 21,i pi 21,j8 ~xk!

1g i 11,i pi 11,j8 ~xk!#1 1
4 ~ f k11

(2) 2 f k
(2)!@g j , j pi , j8 ~xk!

1g j 21,j pi 21,j8 ~xk!1g j 11,j pi 11,j8 ~xk!#. ~A21!

For an even test function things are a bit more com
cated, because there are terms whered functions are multi-
plied with incontinuities. Terms like

E de f (1)~xk1e!d~e!t~e! ~A22!

are defined as the limits that we obtain if we replace thd
function by an even function with a finite width, integrat
and then let the width go to zero. Thus for the integral no
be zero, f (1) must be an even function, so we repla
f (1)(xk1e) by

1
2 @ f (1)~xk1e!1 f (1)~xk2e!#. ~A23!

Proceeding in this way we obtain integrals that are all w
defined:

E de f (1)~xk1e!d~e!t~e!

5 1
2 @ f (1)~xk10!1 f (1)~xk20!#t~0!. ~A24!

For an even test function terms containingt8(0) vanish, and
we obtain a lengthy condition. Using Eqs.~A18!–~A20! a
system of equations results, which together with the norm
ization condition allows us to calculate the coefficientsc̃r ,k
and the currentJ1.
h

v

a
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APPENDIX B: MODEL WITH STOCHASTIC FORCES

We have done the same calculations for a model, in wh
the multiplicative potential fluctuations are replaced by ad
tive stochastic forces. In this model the Langevin equatio
are

ẋ15 f ~x1!1z1~ t !2 1
2 k~x12x22 l !1A2Tj1~ t !, ~B1!

ẋ25 f ~x2!1z2~ t !1 1
2 k~x12x22 l !1A2Tj2~ t !. ~B2!

As opposed to the model with multiplicative fluctuation
here we take only processes withq(zi)5q(2zi), so that on
average there is no directed force. The calculations descr
above can be done analogously for this model. In additi
here we can define an effective stochastic forcez5z11z2.
The Fokker-Planck equation in the case of rigid coupling
then equivalent to a Fokker-Planck equation for a parti
moving in a potentialV(x2 l /2)1V(x1 l /2) under the influ-
ence of the effective stochastic forcez. So the results for two
rigidly coupled particles are equivalent to results for one p
ticle. If z1 and z2 are dichotomous processes or sums
dichotomous processes, the effective stochastic force is
ways an even sum of dichotomous processes, thus the
always a current reversal.

In the model with multiplicative fluctuations an effectiv
stochastic processz5z11z2 can only be defined in the cas
l 50, so that we obtain a Fokker-Planck equation for a p
ticle moving in a fluctuating potentialV(x)z(t). The casel
.0 cannot be reduced to such a one-particle model. As
have shown above, forl .0 a driving mechanism occurs
which is different from the one occurring in the one-partic
case.
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